the α and β configurations (Bombieri et al., 1981, 1983; Bombieri, Forsellini, Del Pra, Tobe \& Henderson, 1979). Another common characteristic of such compounds is the expansion of the external angle at the 'flat' $\mathrm{N}(4), \mathrm{C}(10)-\mathrm{N}(4)-\mathrm{C}(11) \quad 119.2(8)^{\circ}$. This, and the shorter $\mathrm{Co}-\mathrm{N}(4)$ bond distance, could be a consequence of the reduction of angular strain at this centre. No other significant angular distortions are present in the polyamine ligand and the angles to the metal ions agree with the literature data. The $\mathrm{Co}-\mathrm{N}(2)$ distance $\left[1.941\right.$ (7) \AA] trans to the $\mathrm{Co}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$ is of the same order as $\mathrm{Co}-\mathrm{N}[1.951$ (7) \AA] trans to the $\mathrm{Co}-\mathrm{N}\left(\mathrm{NO}_{2}\right)$ group in the nitro derivative [Co(picdien) $\left.\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Bombieri et al., 1983), showing a comparable trans influence by the NO_{2} and $\mathrm{H}_{2} \mathrm{O}$ groups. While the nitrato group shows regularity in bond distances and angles [angles around 120° and $\mathrm{N}-\mathrm{O} \quad 1.22$ (1), 1.24 (1) \AA], the perchlorate anions are rather disordered. The disorder has been described with two main orientations of the two ClO_{4}^{-}anions.

The crystal packing. Fig. 2 shows the packing diagram of the cationic and anionic units together with some details of the hydrogen-bonding scheme present in the structure.
There are some relatively short contacts between $\mathrm{O}(5)$ (water) and $\mathrm{O}\left(63^{\mathrm{i}}\right)$ (nitrato) $\left[(\mathrm{i})\right.$ at $\left.x-\frac{1}{2}, \frac{3}{2}-y, z\right]$ $\left[\mathrm{O}(5) \cdots \mathrm{O}\left(63^{\mathrm{i}}\right) \quad 2 \cdot 63(1) \AA\right], \quad \mathrm{O}(5)_{\text {water }}$ and $\mathrm{O}\left(3^{\mathrm{i}}\right)$ (perchlorate) $\left[\mathrm{O}(5) \cdots \mathrm{O}\left(3^{\mathrm{i}}\right) 2.67\right.$ (2) A$]$, as well as between the nitrato O atoms $\mathrm{O}(61)$ and $\mathrm{O}(62)$ with $\mathrm{N}(2)$ of the adjacent cationic unit $[\mathrm{N}(2) \cdots \mathrm{O}(61)$ $3 \cdot 16(1), \quad \mathrm{H}(21) \cdots \mathrm{O}(61) \quad 2 \cdot 25(3) \AA, \mathrm{N}(2)-\mathrm{H}(21) \cdots$ $\mathrm{O}(61) 162(2)^{\circ}$; $\mathrm{N}(2) \cdots \mathrm{O}(62) 2.91$ (1), $\mathrm{H}(21) \cdots \mathrm{O}(62)$ $\left.2 \cdot 12(3) \AA, N(2)-H(21) \cdots O(62) 140(2)^{\circ}\right]$. This suggests that the role of the nitrato group in the structure is to establish a hydrogen-bonding system between adjacent cationic units with the formation of chains running in the a-axis direction [the O atoms of the nitrato anion
are in contact with the coordinated water molecule of one cationic unit and $\mathrm{N}(2)$ of the adjacent cationic unit]. The other interactions with perchlorate anions are dealing with the two orientations of a disordered ClO_{4} group $\left\{\mathrm{N}(3) \cdots \mathrm{O}\left(24^{\text {ii }}\right)[(\mathrm{ii}) 1-x, 1-y, 1-z \mid 2.95\right.$ (1), $\mathrm{H}(31) \cdots \mathrm{O}\left(24^{\mathrm{ii}}\right) \quad 2 \cdot 10(4) \AA, \quad \mathrm{N}(3)-\mathrm{H}(31) \cdots \mathrm{O}\left(24^{i i}\right)$ 147 (3) ${ }^{\circ} ; \mathrm{N}(3) \cdots \mathrm{O}\left(224^{\mathrm{ii}}\right) \quad 2.96$ (2), $\mathrm{H}(31) \cdots \mathrm{O}\left(224^{\mathrm{i}}\right)$ $2.25(4) \AA, \quad \mathrm{N}(3)-\mathrm{H}(31) \cdots \mathrm{O}\left(24^{\mathrm{ii}}\right) \quad 131(3)^{\circ}, \mathrm{N}(4) \cdots$ $\mathrm{O}\left(22^{\text {iii) }}\right.$ (iii) $\left.\frac{3}{2}-x, \frac{1}{2}+y, 1-z\right] 2.94$ (2), $\mathrm{H}(4) \cdots \mathrm{O}(22)$ $\left.2 \cdot 12(3) \AA, \mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{O}(22) 143(3)^{\circ}\right\}$.

MLT and CC thank the Science and Engineering Research Council for a Research Grant and MH thanks NATO for a scholarship. Technical assistance of Mrs M. Magnabosco is also acknowledged.

References

Bombieri, G., Forsellini, E., Del Pra, A. \& Tobe, M. L. (1981). Inorg. Chim. Acta, 51, 177-183.
Bombieri, G., Forsellini, E., Del Pra, A., Tobe. M. L., Chatterjee, C. \& Cooksey, C. J. (1983). Inorg. Chim. Acta, 75, 93-101.
Bombieri, G., Forsellini, E., Del Pra, A., Tobe, M. L. \& Henderson, R. (1979). Gazz. Chim. Ital. 109, 207-2 11 .
Humanes, M. (1984). PhD thesis, Univ. of Lisbon, Portugal.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht, The Netherlands.)
IUPAC (1970). Nomenclature of Inorganic Chemistry, 2nd ed., pp. 75-83. Oxford: Pergamon.
Motherwell, W. D. S. \& Clegg, W. (1978). PI UTO78. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Snow, M. R. (1972). J. Chem. Soc. Dalton Trans. pp. 1627-1634.

cis-Dichlorobis(di-n-propyl sulfoxide)platinum(II) and cis-Dichlorobis(ethyl methyl sulfoxide)platinum(II)

By R. Melanson and F. D. Rochon
Département de chimie, Université du Québec à Montréal, CP 8888, succ. A, Montréal, Canada H3C 3P8

(Received 23 February 1987; accepted 18 May 1987)

Abstract

PtCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{OS}\right)_{2}\right], \quad M_{r}=534.48\), triclinic, $P \overline{1}, \quad a=8.274$ (5),$\quad b=11 \cdot 256$ (6), $\quad c=11.949$ (7) \AA, $\alpha=115.92$ (4), $\quad \beta=98.30(5), \quad \gamma=99.86(5)^{\circ}, \quad V=$ $955.5(10) \AA^{3}, \quad Z=2, \quad D_{x}=1.857, \quad D_{m}=$ 1.83 (3) $\mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$

0108-2701/87/101869-04\$01.50

$7.91 \mathrm{~mm}^{-1}, F(000)=520, T=295 \mathrm{~K}, R=0.061$ for 2942 unique observed reflections. Pt has cis squareplanar coordination to two Cl and to two S atoms of the dipropyl sulfoxide ligands. The bond distances are $\mathrm{Pt}-\mathrm{Cl}=2.289$ (3), 2.302 (3) and $\mathrm{Pt}-\mathrm{S}=2.263$ (3)
(C) 1987 International Union of Crystallography

Table 1. Experimental details of the two crystals

${ }^{\circ}$)	${ }_{60}$ cis-[$\left.\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right]$	cis-[$\left.\mathrm{Pt}(\mathrm{emso})_{2} \mathrm{Cl}_{2}\right]$
Quadrants	$h, \pm k, \pm l$	$h, k, \pm l$
Scan technique	$2 \theta / \theta$	$2 \theta / \theta$
Scan speed (${ }^{\circ} \mathrm{min}^{-1}$)	1-0-24.0	0.8-24.0
Standard reflections	020, 20 $\overline{1}, 11 \overline{3}$	400, 020, 0012
Variations (\%)	<2.5	<2.0
No. of independent reflections	5597	3771
Observed reflections $\left(I_{\text {net }}>2.5 \sigma\right)$	2942	1660
h, k, l,	$\begin{aligned} & 0 \rightarrow 11,-15 \rightarrow 15, \\ & -16 \rightarrow 16 \end{aligned}$	$\begin{gathered} 0 \rightarrow 11,0 \rightarrow 11, \\ -28 \rightarrow 26 \end{gathered}$
$\mu\left(\mathrm{mm}^{-1}\right)$	7.91	11.86
Crystal shape,	platelet	hexagonal plate
faces and dimensions	012-012 (0.066)	102-102 (0.028)
(mm)	100-100 (0.472)	011-011 (0.284)
	$011-011$ (0.048)	133-133 (0.288)
		104-10 $\overline{4}$ (0.288)
Transmission factor range	0.1579-0.6462	0.0899-0.7199
Max. shift/e.s.d. in final cycle	$0 \cdot 11$	0.21
$\Delta \rho_{\text {max }}\left(\mathrm{e} \AA^{-3}\right)$	0.95 (close to Pt)	1.76 (close to Pt)
$\Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.73	0.77 (close to Pt)
R	0.061	0.069
$w R$	0.048	0.055
Weighting scheme	$1 / \sigma^{2}(F)$	$1 / \sigma^{2}(F)$

and $2 \cdot 247$ (3) \AA. The O atoms are located in the same plane as the platinum coordination plane. $\left[\mathrm{PtCl}_{2}-\right.$ $\left.\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{OS}\right)_{2}\right], \quad M_{r}=450 \cdot 32$, monoclinic, $P 2_{1} / c, a=$ 8.284 (8), $\quad b=7.979$ (6), $\quad c=20.416$ (10) $\AA, \quad \beta=$ 109.59 (5) ${ }^{\circ}, V=1271$ (2) $\AA^{3}, Z=4, D_{x}=2 \cdot 352, D_{m}$ $=2.33(2) \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $11.86 \mathrm{~mm}^{-1}, F(000)=848, T=295 \mathrm{~K}, R=0.069$ for 1660 unique observed reflections. Pt has a cis squareplanar coordination with bond distances $\mathrm{Pt}-\mathrm{Cl}=$ $2.312(5), \quad 2.317(5)$ and $\mathrm{Pt}-\mathrm{S}=2.257$ (5) and 2.272 (5) \AA. The O atoms are also located in the Pt plane. The packing consists of layers of molecules parallel to the $a b$ plane.

Introduction. We have been involved in a study of $\mathrm{Pt}-\mathrm{Me}_{2} \mathrm{SO}$ complexes for many years. The reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with $\mathrm{Me}_{2} \mathrm{SO}$ in aqueous medium produces cis-[$\left.\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2} \mathrm{Cl}_{2}\right]$ (Melanson \& Rochon, 1975). The corresponding palladium salt gives in the same conditions trans- $\left[\mathrm{Pd}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2} \mathrm{Cl}_{2}\right]$ (Bennett, Cotton, Weaver, Williams \& Watson, 1967). The enhanced $(d-d) \pi$ bonding is more effective in the cis Pt complexes, while in the Pd complexes it is probably insufficient to overcome the repulsions between the two sulfoxide ligands.

With other sulfoxides (L), IR data have shown that the $\left[\operatorname{Pd} L_{2} \mathrm{Cl}_{2}\right]$ complexes have the trans S-bonded configuration. In the corresponding Pt^{11} compounds, IR data support a cis configuration except when L is very bulky, as in bis(3-methylbutyl) sulfoxide (Price, Williamson, Schramm \& Wayland, 1972). Sulfoxide ligands have a high trans effect and it has been shown in the reaction of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ with sulfoxides in aqueous

Table 2. Positional parameters $\left(\times 10^{4}\right)$ with their e.s.d.'s and temperature factors

$U_{\text {eq }}=\frac{1}{3} \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
cis $-\left[\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right]$				
Pt	759.1 (5)	$2630 \cdot 9$ (5)	$1336 \cdot 8$ (4)	328
$\mathrm{Cl}(1)$	2928 (3)	2037 (3)	408 (3)	588
$\mathrm{Cl}(2)$	-1048 (4)	1402 (4)	-681 (3)	595
S(1)	2686 (3)	3858 (3)	3254 (2)	356
S(2)	-1503 (3)	3113 (3)	2106 (3)	409
O(1)	4448 (7)	3843 (8)	3267 (6)	466
O(2)	-1164 (7)	4045 (7)	3490 (6)	462
C(1)	2136 (11)	3320 (11)	4382 (9)	376
C(2)	2292 (13)	1859 (12)	3976 (12)	534
C(3)	1775 (17)	1326 (16)	4890 (16)	735
C(4)	2618 (11)	5607 (10)	3962 (9)	396
C(5)	3163 (13)	6266 (13)	3153 (12)	526
C(6)	3083 (16)	7726 (15)	3702 (15)	647
C(7)	-3060 (11)	1586 (11)	1730 (11)	452
C(8)	-2537 (14)	933 (12)	2543 (11)	529
C(9)	-4003 (14)	-152 (13)	2481 (12)	601
C(10)	-2683 (12)	3796 (12)	1283 (11)	473
C(11)	-1699 (16)	5156 (17)	1483 (17)	744
C(12)	-2589 (25)	5952 (24)	1107 (26)	1242
cis-[$\left.\mathrm{Pt}(\mathrm{emso})_{2} \mathrm{Cl}_{2}\right]$				
Pt	2263.8 (8)	$843 \cdot 1$ (7)	-1256.4 (4)	507
$\mathrm{Cl}(1)$	-48(5)	-608 (5)	-1160 (2)	591
$\mathrm{Cl}(2)$	3511 (7)	-1706 (5)	-1324 (3)	689
S(1)	4670 (6)	2053 (5)	-1305 (3)	533
S(2)	890 (6)	3287 (5)	-1245 (2)	491
O(1)	4746 (15)	3880 (13)	-1340 (7)	680
O(2)	-868 (16)	3167 (16)	-1262 (7)	802
C(1)	6454 (20)	1336 (20)	-554 (9)	562
C(2)	5144 (31)	1319 (22)	-2052 (14)	999
C(3)	3748 (24)	1550 (26)	-2697 (9)	707
C(4)	877 (24)	4595 (20)	-1958 (9)	585
C(5)	2099 (22)	4491 (20)	-515 (10)	695
C(6)	2256 (26)	3623 (22)	213 (10)	731

medium that trans- $\left[\mathrm{Pt} L_{2} \mathrm{Cl}_{2}\right]$ is first formed. trans[$\mathrm{Pt} L_{2} \mathrm{Cl}_{2}$], where $L=$ dipropyl sulfoxide (Price, Birk \& Wayland, 1978) and benzyl methyl sulfoxide (Rochon, Kong \& Girard, 1986), can be isolated after a few minutes of reaction. The trans compounds later isomerize to the more stable cis complexes.

A few years ago, we started to study the reactions of Pt complexes with sulfoxide ligands other than $\mathrm{Me}_{2} \mathrm{SO}$. In order to synthesize hydroxo-bridged platinum(II) dimers, we have synthesized as starting materials cis-[$\left.\mathrm{Pt} L_{2} \mathrm{Cl}_{2}\right]$ (Rochon, Kong \& Girard, 1986). In order to characterize all the compounds involved in these reactions, we have decided to determine the crystal structures of some of these compounds. We have recently published the structure of cis-[Pt (tetrahydrothiophene 1 -oxide) Cl_{2}] (Melanson, de la Chevrotière \& Rochon, 1985). We now report the crystal structure of cis- $\left[\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right][\mathrm{dpso}=\mathrm{di}(n$-propyl) sulfoxide $]$ and of $c i s-\left[\mathrm{Pt}(\mathrm{emso})_{2} \mathrm{Cl}_{2}\right]($ emso $=$ ethyl methyl sulfoxide $)$.

Experimental. The two compounds cis-[$\left.\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right]$ (I) and cis-[Pt(emso) $\left.)_{2} \mathrm{Cl}_{2}\right]$ (II) were synthesized as already reported (Rochon, Kong \& Girard, 1986) and were recrystallized by slow evaporation of aqueous solutions.

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

cis- $\left\|\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right\|$	
$\mathrm{Pt}-\mathrm{Cl}(1)$	$2.289(3)$
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2.302(3)$
$\mathrm{Pt}-\mathrm{S}(1)$	$2.263(3)$
$\mathrm{Pt}-\mathrm{S}(2)$	$2.247(3)$
$\mathrm{S}(1)-\mathrm{O}(1)$	$1.458(7)$
$\mathrm{S}(2)-\mathrm{O}(2)$	$1.471(7)$
$\mathrm{S}(1)-\mathrm{C}(1)$	$1.79(1)$
$\mathrm{S}(1)-\mathrm{C}(4)$	$1.79(1)$
$\mathrm{S}(2)-\mathrm{C}(7)$	$1.79(1)$
$\mathrm{S}(2)-\mathrm{C}(10)$	$1.78(1)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.53(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.53(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.51(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.50(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.54(2)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.50(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.54(2)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.43(3)$

cis $-\left\|\mathrm{Pt}(\mathrm{emso})_{2} \mathrm{Cl}_{2}\right\|$	
Pt-Cl(1)	$2 \cdot 312$ (5)
$\mathrm{Pt}-\mathrm{Cl}(2)$	$2 \cdot 317$ (5)
$\mathrm{Pt}-\mathrm{S}(1)$	$2 \cdot 257$ (5)
$\mathrm{Pt}-\mathrm{S}(2)$	$2 \cdot 272$ (5)
$\mathrm{S}(1)-\mathrm{O}(1)$	1.47 (1)
$\mathrm{S}(2)-\mathrm{O}(2)$	1.46 (1)
S(1)-C(1)	1.83 (2)
S(1)-C(2)	1.80 (3)
S(2) ..C(4)	1.79 (2)
$\mathrm{S}(2)-\mathrm{C}(5)$	1.78 (2)
C(2). - ${ }^{\text {(3) }}$	1.45 (3)
$\mathrm{C}(5) \mathrm{C}(6)$	1.60 (3)

$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	88.0 (1)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{S}(1)$	88.3 (1)
$\mathrm{Cl}(1)-\mathrm{Pl}-\mathrm{S}(2)$	$175 \cdot 8$ (1)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(1)$	175.9 (1)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(2)$	87.8 (1)
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{S}(2)$	95.9 (1)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{O}(1)$	117.4 (3)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{O}(2)$	116.4 (3)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(1)$	110.8 (4)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(4)$	110.1 (4)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(7)$	111.6 (4)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(10)$	111.5 (4)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	106.7 (5)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(4)$	107.4 (5)
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(7)$	108.1 (5)
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(10)$	107.5 (5)
$\mathrm{C}(1)-\mathrm{S}(1) \cdot \mathrm{C}(4)$	103.5 (5)
$\mathrm{C}(7)-\mathrm{S}(2)-\mathrm{C}(10)$	100.4 (6)
$\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	110.4 (8)
S(1)-C(4)-C(5)	110.8 (8)
$\mathrm{S}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	112.3 (8)
$\mathrm{S}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	112.5 (10)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112 (1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	112(1)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	113 (1)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	118 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	87.9 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{S}(1)$	174.7 (2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{S}(2)$	89.9 (2)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(1)$	87.4 (2)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{S}(2)$	176.4 (2)
$\mathrm{S}(1)-\mathrm{Pt}-\mathrm{S}(2)$	95.0 (2)
Pt -S(1)-O(1)	119.0 (6)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{O}(2)$	116.6 (6)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(1)$	108.1 (6)
$\mathrm{Pt}-\mathrm{S}(1)-\mathrm{C}(2)$	110.3 (8)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(4)$	111.3 (6)
$\mathrm{Pt}-\mathrm{S}(2)-\mathrm{C}(5)$	109.4 (6)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	109 (1)
$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	105 (1)
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(4)$	107 (1)
$\mathrm{O}(2)-\mathrm{S}(2)-\mathrm{C}(5)$	110 (1)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	113 (2)
$\mathrm{S}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	113 (1)
$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(2)$	105 (1)
$\mathrm{C}(4)-\mathrm{S}(2)-\mathrm{C}(5)$	102 (1)

The experimental details of the two crystals are shown in Table 1. Density by fiotation in thallous malonate aqueous solution for (I) and dibromo-methane-ethylene bromide for (II); space groups determined by precession photographs; Syntex $P \overline{1}$ diffractometer; graphite-monochromatized Mo $K \alpha$ radiation; cell parameters from refined angles of 15 centered reflections; $\sigma(I)$ calculated as in Melanson \& Rochon (1975); absorption correction based on equations of crystal faces; data corrected for Lorentz and polarization effects; atomic scattering factors of Cromer \& Waber (1965) for Pt, Cl, S, O, C and of Stewart, Davidson \& Simpson (1965) for H; anomalous-dispersion terms of Pt, Cl and S from Cromer (1965).

Patterson map showed position of Pt; other nonhydrogen atoms located by structure factors and Fourier-map calculations; isotropic secondaryextinction correction (Coppens \& Hamilton, 1970); H atoms fixed at calculated positions ($\mathrm{C}-\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.85 \AA$) with isotropic $B=6.0 \AA^{2}$. Cal-
culations on a Cyber 830 with programs of Melanson \& Rochon (1975).*

Discussion. The refined atomic parameters are listed in Table 2. A labeled diagram of the two molecules is shown in Fig. 1. The coordination around the Pt atom is square planar and the angles around the Pt atom are close to the expected values of 90 and 180°. As expected from IR spectroscopy, the compounds are the cis isomers (Rochon, Kong \& Girard, 1986) and the sulfoxide ligands are bonded to Pt through their S atom. Bond distances and angles are reported in Table 3.

The weighted best coordination plane was calculated through the five atoms. The deviations are for (I): Pt, -0.0013 (6); $\mathrm{Cl}(1),-0.010$ (4); $\mathrm{Cl}(2), 0.040$ (4); S(1), 0.027 (3); $\mathrm{S}(2),-0.006$ (4) \AA; and for (II): Pt, -0.0002 (7); $\mathrm{Cl}(1),-0.044$ (4); $\mathrm{Cl}(2), 0.065$ (5); $\mathrm{S}(1)$, $-0.050(5) ; S(2), 0.048$ (5) A. The O atoms of the sulfoxide ligands are also located in the same plane as the platinum coordination plane. The deviations are for (I): $\mathrm{O}(1), 0.003(9)$ and $\mathrm{O}(2), 0.063$ (9) \AA and for (II): $\mathrm{O}(1), 0 \cdot 004$ (13) and $\mathrm{O}(2), 0 \cdot 180(14) \AA$.

Fig. 1. Labeled diagram of the molecules (a) cis-[Pt(dpso) $\left.)_{2} \mathrm{Cl}_{2}\right]$ and (b) cis- $\left[\mathrm{Pt}(\mathrm{emso})_{2} \mathrm{Cl}_{2}\right]$.

The $\mathrm{Pt}-\mathrm{Cl}$ bonds [2.289 (3), 2.302 (3) \AA for (I) and 2.312 (5), 2.317 (5) \AA for (II)] and the $\mathrm{Pt}-\mathrm{S}$ bond distances [2.263 (3), 2.247 (3) \AA for (I) and 2.257 (5), $2 \cdot 272$ (5) \AA for (II)] are normal [the standard deviations calculated as in Melanson \& Rochon (1975) are probably underestimated] and agree well with the values found in cis- $\left[\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{SO}_{2} \mathrm{Cl}_{2}\right]\right.$ (Melanson \& Rochon, 1975) and cis-[Pt(tetrahydrothiophene sulfoxide) ${ }_{2}$ Cl_{2}] (Melanson, de la Chevrotière \& Rochon, 1985). The S atoms in the sulfoxide ligands are in a tetrahedral environment. The $\mathrm{Pt}-\mathrm{S}-\mathrm{O}$ angles [117.4 (3), 116.4 (3) ${ }^{\circ}$ for (I) and 119.0 (6), 116.6 (6) ${ }^{\circ}$ for (II)] are larger than the tetrahedral value as observed in the Ptsulfoxide structures described above and other published structures (Rochon \& Guay, 1987, and references therein). The $\mathrm{Pt}-\mathrm{S}-\mathrm{C}$ angles [110.1 (4)-111.6 (4) ${ }^{\circ}$ for (I) and 108.1 (6)-111.3 (6) ${ }^{\circ}$ for (II)] are normal as in $\mathrm{Pt}-\mathrm{Me}_{2} \mathrm{SO}$ complexes (Melanson \& Rochon, 1975; Rochon, Kong \& Melanson, 1985). The S-O, S-C and $\mathrm{C}-\mathrm{C}$ bond distances agree well with published values except for a few terminal $\mathrm{C}-\mathrm{C}$ bonds. The thermal factors of most terminal C atoms are high, indicating some disorder. All the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in cis- $\left[\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right]$ are slightly larger than expected [112 (1)-118(2) ${ }^{\circ}$, resulting in a flattening of the propyl groups.

The density of the crystal cis- $\left[\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right]$ ($1.857 \mathrm{Mg} \mathrm{m}^{-3}$) is smaller than expected. The corresponding densities for cis- $\left[\mathrm{Pt}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2} \mathrm{Cl}_{2}\right]$, cis- $[\mathrm{Pt}-$ (tetrahydrothiophene sulfoxide) ${ }_{2} \mathrm{Cl}_{2}$] and cis-[Pt(emso) $2_{2} \mathrm{Cl}_{2}$] are $2.620,2.381$ and $2.352 \mathrm{Mg} \mathrm{m}^{-3}$. The low density in $c i s-\left[\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right]$ results in high thermal factors of the carbon atoms, which tend to occupy more space, resulting in a flattening of the propyl groups.

The packing of the molecules is shown in Figs. 2 and 3.* No hydrogen bonding is expected for these compounds. In cis- $\left[\mathrm{Pt}(\mathrm{dpso})_{2} \mathrm{Cl}_{2}\right]$, the propyl groups are almost perpendicular to the platinum plane which also contains the O atoms. The propyl groups are also almost parallel to the b axis. In cis-[Pt(emso) $\left.{ }_{2} \mathrm{Cl}_{2}\right]$, the platinum planes with the O atoms are nearly parallel to the $a b$ plane.

Grateful acknowledgements are made to the Natural Sciences and Engineering Research Council of Canada and to the Ministère de l'Education (FCAR) for financial support.

* See deposition footnote.

References

Bennett, M. J., Cotton, F. A., Weaver, D. L., Williams, R. J. \& Watson, W. H. (1967). Acta Cryst. 23, 788-796.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Cromer, D. T. (1965). Acta Cryst. 18, 17-23.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Melanson, R., de la Chevrotière, C. \& Rochon, F. D. (1985). Acta Cryst. C41, 1428-1431.
Melanson, R. \& Rochon, F. D. (1975). Can. J. Chem. 53, 2371-2374.
Price, R. H., Birk, J. P. \& Wayland, B. B. (1978). Inorg. Chem. 17, 2245-2250.
Price, R. H., Williamson, A. N., Schramm, R. F. \& Wayland, B. B. (1972). Inorg. Chem. 11, 1280-1284.

Rochon, F. D. \& Guay, F. (1987). Acta Cryst. C43, 43-46.
Rochon, F. D., Kong, P. C. \& Girard, L. (1986). Can. J. Chem. 64, 1897-1902.
Rochon, F. D., Kong, P. C. \& Melanson, R. (1985). Acta Cryst. C41, 1602-1605.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Acta Cryst. (1987). C43, 1872-1875

Structure of Pentaaqua(hypoxanthine)nickel(II) Sulfate*

By Erich Dubler, Gaby Hänggi and Helmut Schmalle
Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

(Received 12 February 1987; accepted 19 May 1987)

Abstract

Ni}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4} \mathrm{O}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{SO}_{4}, M_{r}=380.96\), triclinic, $\quad P \overline{1}, \quad a=7.498$ (1),$\quad b=12.901$ (2),$\quad c=$ 6.633 (1) Å, $\quad \alpha=92.77$ (1),$\quad \beta=90.15$ (1), $\quad \gamma=$ 92.23 (1) ${ }^{\circ}, V=640.4$ (3) $\AA^{3}, Z=2, D_{m}=1.98$ by flotation, $D_{x}=1.98 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA$, $\mu=17.4 \mathrm{~cm}^{-1}, F(000)=392$, room temperature, R $=0.032$ for 5408 observed unique reflections. The

\footnotetext{ * Hypoxanthine is 1,7 -dihydro- 6 H -purin-6-one.

0108-2701/87/101872-04\$01.50 }

structure contains [Ni (hypoxanthine) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{s}\right]^{2+}$ cations and non-coordinating sulfate anions. Nickel(II) exhibits a slightly distorted octahedral coordination by five water molecules and a monodentate hypoxanthine ligand binding through $N(7)$. Hypoxanthine is protonated at $\mathrm{N}(1)$ and $\mathrm{N}(9)$; metal coordination at $\mathrm{N}(7)$ induces about 30% of the shifts in the bonding angles of the imidazole ring compared to the shifts by protonation of guanine derivatives at $\mathrm{N}(7)$. The structure is © 1987 International Union of Crystallography

